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Abstract 0 The dispersion model has been widely used to analyze
local pharmacokinetics in the organs and the tissues since the 1980’s.
However, an ambiguity still remains in selecting the boundary
conditions which are necessary to solve the basic equation of the
model. In this note, theoretical considerations are given to this problem
and we present here some deficiencies of the mixed boundary
conditions. It seems that theoretical confusion exists in the literature
for the mixed boundary conditions. It is well-known that the solution
of the dispersion model with a bolus input is the inverse Gaussian
distribution for the mixed boundary conditions. However, it is rarely
recognized that the inverse Gaussian distribution requires an open
boundary at either the inlet or the outlet. For the analysis of local
pharmacokinetics, the use of the classical Danckwerts (or closed)
boundary conditions is recommended.

Introduction

To predict in vivo organ clearances from in vitro findings,
a mathematical model that assumes certain structured
blood flow is indispensable. It has been reported that the
convection dispersion model1,2 and distributed tube model3,4

are sound models which give appropriate predictions of
organ clearance in various situations. These two models
afford similar predictions in linear kinetics,5 but not in
nonlinear kinetics.4-6 This is because the distributed tube
model does not assume any micromixing of the blood
stream in the bed. In contrast, micromixing is incorporated
naturally into the dispersion model.

The dispersion model was proposed by Roberts et al. in
the 1980s1,2 and has been used to analyze local pharma-
cokinetics in various situations.7-11 The dispersion model
is expressed by a partial differential equation, and to obtain
its solution, the entrance and the exit boundary conditions
are necessary. A drawback of the dispersion model is an
ambiguity in selecting the boundary conditions.4 Roberts
et al. initially chose the Danckwerts (or closed) boundary
conditions (DBC) because it satisfies the extremes of the
well-stirred and tube model predictions,1 but later favored
the mixed boundary conditions (MBC).5 MBC have also
been preferred by several other investigators.4,7-9

The solution for MBC is apparently equivalent to a
probabilistic distribution of the rate of first passage of
particles moving randomly (as a random walk) that is
referred to as the inverse Gaussian distribution.2 A random
walk is a discrete process but is superimposed on a
convection flow by limiting the size of the steps and by
expanding the basic equation in a Taylor series.12 Accord-
ingly, MBC has been related to the first passage time.5
However, there is a pitfall, as will be discussed later.

In this correspondence, theoretical considerations are
given to the ambiguity of the boundary conditions of the
dispersion model. Some deficiencies of MBC will be dis-
cussed. We recommend the use of DBC.

Deficiencies of the Mixed Boundary Condition
The dispersion model is described by a partial differential

equation as follows:1,2

where C is the normalized concentration of a substance at
the normalized cross-section Z and at the normalized time
T, DN is the dispersion number, and RN is the efficiency
number. DBC is defined as follows:2,5,13

where Cin is the concentration in the entering stream. MBC
is expressed as follows:2,5,14

The analytical solution of the dispersion model after
bolus input with MBC is given by:2

where the elimination is not considered. As described
above, eq 6 also represents the inverse Gaussian distribu-
tion.15
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It should be noted, however, that the probabilistic
distribution of first passage times of a random walk
becomes the inverse Gaussian distribution where the inlet
boundary is open.12 The situation of MBC is distinct from
the first passage time because its inlet is not open as
indicated by eq 4. In reality, MBC is equated to the last
passage times.12 As shown in Figure 1, these two sojourn
times are different but apparently equivalent because the
time for roaming on the inlet in the first passage times
corresponds to that for the outlet in the last passage times.

The dispersion assumed in the dispersion model repre-
sents mixing of the blood streams flowing through the
microcapillaries in the tissue.5 Accordingly, dispersion
occurs within the tissue but must end at the boundaries.
In this instance, both the first and the last passage times
are inappropriate because an open boundary is postulated.
As MBC is the last passage time, the dispersion is assumed
across the exit,10 which is physiologically irrelevant because
the blood never returns from the distal vessels.

Another deficiency of MBC is that it cannot properly
control the transfer of mass across the inlet. The peculiarity
is obvious for a bolus case. The total mass of the drug is
given by integration of eq 6:

where R ) T /DN. Equation 7 takes a minimum value of 1
when R f +∞, namely T f +∞ and/or DN ) 0, but scatters
to +∞ as R or T approaches 0. It implies that the mass
retained in the bed becomes infinity at the time of injection
(Figure 2).

It is generally agreed in the field of chemical engineering
that the correct boundary conditions are those that show
the flux

to be continuous at the boundary.12 Since the differential
term in eq 8 is ignored for the inlet of MBC (eq 4), the
implicit flux occurs when ∂C/∂Z * 0 at Z ) 0. This is the
reason for the excessive mass in eq 7. The mass is increased
explosively at the time of injection when ∂C/∂Z becomes
-∞ at the inlet and then evaporates gradually after the
injection when ∂C/∂Z > 0.

Availability predictions of the dispersion model at steady-
state for any boundary conditions in linear kinetics have
been reported (eqs 6 and 7 in reference 16). However, they
are irrelevant for MBC. If ∂C/∂Z is less than zero at the
inlet of MBC, which occurs when RN > 0, the mass needs
to be pored into the bed more than the flow rate allows to

satisfy eq 4. This is impossible. In other words, MBC does
not have a reasonable solution for steady-state conditions
when RN > 0 because of the improper inlet definition.

Danckwerts Boundary Condition
DBC is a necessary consequence of the restrictions for

mass conservation and discontinuity of mixing at the
boundary.17 This is currently the most physiological as-
sumption for the solutes that are carried by the blood-
stream in the organ, because micromixing of the blood
never occurs across the boundaries. In the future, however,
DBC might be reexamined for unnatural discontinuities
at the boundaries. Continuous or stepwise change of
dispersion has been considered theoretically.18,19 These
conditions are advantageous to simulate the real dynamics
in the organ, although they are inapplicable to the current
analyses because the change of the dispersion in the organ
is unknown.

A major shortcoming of DBC is that its analytical
solution is mathematically complex.2 Yet a solution is
possible for linear kinetics with inverse Laplace transfor-
mation techniques that are used frequently to solve the
two-compartment dispersion model.7,20,21 In addition, sev-
eral numerical methods have been introduced to calculate
the dispersion model for nonlinear kinetics.14,22-24 It is now
possible to obtain non-steady-state solutions of nonlinear
multicompartment dispersion models with any input func-
tion.23

Practical Considerations
Despite the evident theoretical defects, it must be

emphasized that most of the analyses done with MBC in
the literature are still relevant because its solution is very
similar to that of DBC where the dispersion number is
small5 (especially for DN e 0.2). However, the results of
some studies need to be interpreted cautiously.

First of all, it must be recognized that MBC offers
unrealistically spreading outflow curves at higher DN. After
a bolus dose, the dimensionless variance of the outflow
curves for MBC is calculated by:2

Equation 9 implies CV2 exceeds that for even the well-

Figure 1sSchematic representation of a first passage time and a last passage
time of a particle moving randomly in the bed. The first passage time starts
when the particle first enters the bed and continues until it first reaches the
exit. The last passage time starts when the particle last leaves the entrance
and continues until it exits from the bed, never to return. Note that these
sojourn times may include some time spent outside the bed. The dotted line
indicates the trajectory of a lost particle in the case of MBC.
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Figure 2sOverestimation of mass retained in the bed by the dispersion model
with the mixed boundary condition after bolus input. Note that the mass must
be 1.0 independently of time or dispersion number (DN). The mass is calculated
by eq 7.
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Journal of Pharmaceutical Sciences / 1363
Vol. 88, No. 12, December 1999



stirred situation (CV2 ) 1) when DN > 0.5. This overspread-
ing occurs primarily because the excessive mass is trans-
ferred to the outlet very rapidly in the early period. Another
reason is the long-lasting nature of the curve generated
with the open outlet condition. Therefore, it is an error
caused by the improper definitions. CV2 of the dispersion
model for DBC is calculated by:2

in which CV2 never exceeds 1, increases monotonically as
DN grows, and reaches the well-stirred situation at infinity
(refer to Figure 3 in ref 10). All theoretical considerations
that relate to the shape of the outflow curves of MBC may
have potential problems.

Several investigators simulated availabilities with MBC
and DBC for various situations and discussed the difference
between the two conditions.5,25 However, the physiological
meaning of the difference is obscure. In linear pharmaco-
kinetics, availability is determined by the residence time
distribution of the solute (namely, the shape of the outflow
curves),5 and as Nauman concluded, both open and closed
systems afford the same residence time distribution when
time spent outside the system boundaries is excluded from
the total,12 which is a reasonable assumption for clearance
of drugs. Consequently, availability is independent of
boundary conditions for linear kinetics if the conditions are
realistic. Unfortunately, MBC is not. The difference be-
tween MBC and DBC simply represents the extent of errors
raised by MBC. Analogous consideration needs to be paid
to interpretation of the dispersion numbers calculated with
MBC and DBC.10

It is advocated that the extent of intrahepatic mixing is
very close to the well-stirred situation because the “mix-
edness” of solutes is maximized at usual dispersion num-
bers and then decreases as the dispersion number in-
creases, and this suggestion of maximum mixedness in the
liver may explain the discrepancy between the apparent
validity of the well-stirred model.26 In this report, “mixed-
ness” was evaluated based on the relative entropy of the
outflow curves predicted by the dispersion model of MBC.
However, the curves predicted by MBC may become
unrealistic as discussed above. For this reason, the evalu-
ation of “mixedness” seems to be erroneous. The conclusion
of this report needs some modification.

In the extended use of the dispersion model, MBC would
be more troublesome. In nonlinear kinetics, availability
predictions by MBC could be inaccurate because clearance
depends on the mass retained in the bed. Moreover, it is
difficult to calculate nonlinear differential equations with
boundary conditions that do not conserve mass. The
assumption of MBC is incompatible with physiologically
based pharmacokinetics because organs cannot be con-
nected in a tandem manner due to the requirement of the
open outlet.

The inverse Gaussian distribution is frequently adopted
as a distribution function for parallel tube models.4,5,9,10,14,25

From an empirical viewpoint, it is relevant if the model
explains real data properly. However, for greatly spreading
curves, the appropriateness of the shape needs to be
verified because the influence of the improper boundary
definitions of its generating function becomes apparent.

The dispersion model has been criticized for its inability
to explain the tail part of the dilution curves after bolus
input.8-10 In this instance, the characteristic does not differ
between DBC and MBC. However, it seems more reason-
able to consider the temporal adsorption of substances to
the surface of the vasculature as a possible reason for
deviation from the model.11 If such adsorption occurs, the

dilution curve needs to be analyzed with the multi-
compartment dispersion model7,23 even for vascular refer-
ences.

Conclusion

MBC has theoretical deficiencies both at the entrance
and the exit. Although analyses performed thus far with
MBC are still relevant as approximations in most cases,
the use of DBC is recommended to avoid theoretical
confusion. Considering the recent progress in the develop-
ment of numerical methods, the calculation of DBC is not
a major problem. When the inverse Gaussian distribution
is applied in pharmacokinetic considerations, it should be
recognized that an open boundary is assumed at the inlet
or the outlet.
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